Step 8: Make the cutter for the displacer
* There's a different tin can in the photo's, you should use the same size tin as you used for the top and bottom of the engine. Take a tin can and cut around the rim(Fig 23a) so that you have a clean edge (Fig 23b).
Now drill a hole in the tin can and thread in a bolt or screw (Fig 23c), this is just to use as a handle to move the hot tin can. Step 9: Make the displacer The displacer is cut from 10mm polystyrene, you can buy this as ceiling tiles or just cut it yourself using a wire cutter (Fig 24a). Heat up your cookie cutter using an electric hob(Fig 24b) or similar and press it into the polystyrene. It should cut out nice round, slightly tapered displacer parts.
After you've cut them out, they should look like Fig 25a. Glue the two halves together using epoxy.
Finally, sand the edge little to take the edges off (Fig 25c).
Step 10: Drill an air hole through the lid: [DRILL AIR HOLE THROUGH THE LID..... I forget to do that , I had to drill it later, very awkward!] No picture yet.... Step 11: Epoxy the top lid into the displacer cylinder Push the top tin can into the displacer cylinder until it's about 5mm from the top edge of the lowest curved parts(Fig 27a). If it's loose and keeps falling out, you can bend the edges of the can out slightly by running the back of the knife around the edge of the tin (Fig 27b).
Step 12: Fit the displacer rod.
Put the polystyrene displacer into the displacer cylinder (Fig 28a), and make sure that it is centred. Then, take the brass rod out of the displace bushing jug that you made earlier, and push it through the bushing and through the displacer (Fig 28b). Remove the rod, and sand a indent in the bottom of the displacer (Fig 28c). Re fit the rod, and epoxy it in place (Fig 28d), using the indent you just made.
Step 13: Make the cranks The cranks have two arms which are set at 90* rotation apart. The first one is for the diaphragm to connect to. It should be bent out around 3mm (Fig 29a). Make sure that the two ends of the cranks spin in line with each other. For the next part, measure the distance between the displacer and the end of the cylinder (Fig 29b). Deduct about 2mm and half that number, this will be the displacer stroke. Now bend the displacer crank arm, it iss bent at 90* rotation relative the diaphragm arm. If you lay the diaphragm arm on the table, the finished displacer arm should point to the sky (unless you're a bat).
You can thread the cranks through the plastic bearing and give it a spin (Fig 29e). It should be extremely easy to spin. Cut the protruding end to size, the left side needs to be about 50mm long (Fig 29f). You can attach the flywheel (the jig for the bushing) and see how it spins. Step 14: Bend the displacer rod above the bushing. Test the displacer, to make sure that there is not too much friction. Lift the displacer up, it should fall under its own weight easily. If it doesn't, there must be too much fiction somewhere, you need to find the source of this. If it is OK, you can bend the rod over just above the bushing (Fig 30a). When that's done, you can add the diaphragm, which should be a little loose (Fig 30b)
Step 15: Make the connecting rods and attach them.
Step 16: Epoxy the bottom tin on.
Step 17: Attach the flywheel To attach the flywheel, bend the end of the crank over and tape it to the cardboard. Fig 33: Attach the flywheel. Step 18: Add a counter weight Tape a 5p coin onto the cardboard, on the opposite side that the displacer crank arm is pointing to Step 19: Finished ! Hopefully your engine will zoom up to 100 RPM straight away, but if it doesn't, don't despair. Check for air leaks by submerging the engine under warm (50c ish) water. There will be a small amount leaking through the displacer bushing, this is normal. If the engine is airtight and it still doesn't run, there's probably too much friction. There's not much I can say about that other than fiddle around with all of the push rods, sometimes getting a better alignment between all of the parts will help considerably. Remember, this engine is made from very low temperature materials, don't expose it to any more heat than that off of a cup of hot/just boil water!
|